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Probabilities

Section 1

Probabilities
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Probabilities

Basics: Cards

» 32 cards Q (sample space)
» 4 ‘colors’: C = {&, M, O, 0}
> 8values: V=1{7,8,9,10,/,Q,K, A}

» Individual cards (‘outcomes’) are denoted with value and color: 80
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Probabilities

Basics
Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space Q
» Events will be denoted with £
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Probabilities

Basics
Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space Q
» Events will be denoted with £

Examples

> ‘We draw a heart eight’ — £ = {80}

> ‘We draw card with a diamond’ —
E={7,80,90,100,J0,Q0, KO, AO}

‘We draw a queen’ — E = {Qé, Qb, QH, QU
» ‘We draw a heart eight or diamond 10’
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Basics
Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space Q
» Events will be denoted with £

Examples

> ‘We draw a heart eight’ — £ = {80}

> ‘We draw card with a diamond’ —
E={70,80,90,104,/¢,Q0, KO, AQY

> ‘We draw a queen’ — £ = {Qé, Qb, QH, QO

‘We draw a heart eight or diamond 10" — £ = {80, 10}

» ‘We draw any card’
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» We define what events we are interested in
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> ‘We draw card with a diamond’ —
E={70,80,90,104,/¢,Q0, KO, AQY

> ‘We draw a queen’ — £ = {Qé, Qb, QH, QO

‘We draw a heart eight or diamond 10" — £ = {80, 10}

» ‘We draw any card’ - £ =Q

v
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Probabilities

Basics
Probabilities

» Probability p(£): Likelihood, that a certain event (E C Q) happens
»0<p<i
> p(E) = 0: Impossible event p(E) = 1: Certain event
> p(E) = 0.000001: Very unlikely event
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Probabilities

Basics
Probabilities

» Probability p(£): Likelihood, that a certain event (E C Q) happens
»0<p<i
> p(E) = 0: Impossible event p(E) = 1: Certain event
> p(E) = 0.000001: Very unlikely event

Example

> If all outcomes are equally likely: p(E) = ”i‘

> p({89)) = %
> p({Qk, QW, Q0. QV}) = 3
» p(Q2) =1 (must happen, certain event)
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Probabilities

Basics |
Probability and Relative Frequency

» Probability (p): Theoretical concept, idealisation
> Expectation
> Relative Frequency (f): Concrete measure

» Normalised number of observed events
» E.g., after 10 times drawing a card (with returning and shuffling), we
counted the event & eight times: f({x#}) = &

» For large numbers of drawings, relative frequency approximates the
probability
> limef=p
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Probabilities

Basics
Joint Probability (Independent Events)

> We are often interested in multiple events (and their relation)
> E: We draw 890 two times in a row

» Fy: First card is 80

» £,: Second card is 89

> p(E) = p(Er, E2) = p(Er) * p(E2) = 35 * 35 = 0.0156
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Basics
Joint Probability (Independent Events)

> We are often interested in multiple events (and their relation)
> F: We draw 80 two times in a row

» Fy: First card is 80

» F£,: Second card is 80

> p(E) = p(Er, E2) = p(Er) * p(E2) = 35 * 35 = 0.0156
> E: We draw Q two times in a row

» [q: First card is X©

» £,: Second card is XQ

> p(E) = p(Er, £2) = p(E1) * p(E2) = = 0.0625
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» Fy: First card is 80
» £,: Second card is 89
> p(E) = p(Er, E2) = p(Er) * p(E2) = 35 * 35 = 0.0156
» E: We draw © two times in a row
» Fq: First card is X
» £,: Second card is XQ
> p(E) = p(Er, E2) = p(Er) * p(E2) = | % § = 0.0625
> So far, events have been independent

> because we return and re-shuffle the cards all the time
» Drawing 8Q the first time has no influence on the second drawing
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Probabilities

Basics |
Conditional Probability (Dependent Events)

» We no longer return the card
» E: We draw 890 two times in a row

» £q: First card is 80
» F,: Second card is 80

)

>
» This no longer works, because the events are not independent
» There is only one 80 in the game, and p(£,) has to take into account
that it might be gone already
This is expressed with the notion of conditional probability
p(Er, E2) = p(E1) * p(Ea|Ev)
» p(E:2|E1) = 0, therefore p(E) =0

vy
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Probabilities

Basics Il
Conditional Probability (Dependent Events)

> £: We draw Q two times in a row
» £q: First card is X
» F,: Second card is X
> p(Er,E) = p(Er) * p(Es|E1) = & + & = 0.056
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Probabilities

Conditional and Joint Probabilities

Example

Relation between hair color (H) and preferred wake-up time (V)"

brown  red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Experimental Results, Q: Group of questioned people, |Q| = 65

'All numbers are made up
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Conditional and Joint Probabilities

Example

Relation between hair color (H) and preferred wake-up time (V)"

brown  red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Experimental Results, Q: Group of questioned people, |Q| = 65

p(H =brown) = 22 p(H =red) = {

15
p(W=early) =23 p(W = late) = 6—55 }sums

'All numbers are made up
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Probabilities

Conditional and Joint Probabilities

Example
Relation between hair color (H) and preferred wake-up time (W)!

brown  red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Experimental Results, Q2: Group of questioned people, |Q| = 65

> Joint p.: p(W = late, H = brown) = 22

> Probability that someone has brown hair and prefers to wake up late
» Denominator: Number of all items
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Probabilities

Conditional and Joint Probabilities

Example
Relation between hair color (H) and preferred wake-up time (W)!

brown  red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Experimental Results, Q2: Group of questioned people, |Q| = 65

> Joint p.: p(W = late, H = brown) = 20
> Probability that someone has brown hair and prefers to wake up late

» Denominator: Number of all items

> Conditional p.: p(W = late|H = brown) = 22
> Probability that one of the brown-haired participants prefers to wake
up late
» Denominator: Number of remaining items (after conditioned event

has happened)
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Probabilities

Conditional and Joint Probabilities

Example

brown red margin

early p(W=eH=b)=031 pW=eH
late p(W=1IH=b)=046 p(W=IH

r)=0.15 p(W=¢e)=0.46
1)=008  p(W=1/)=0.54

margin p(H=b)=0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by ||
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Probabilities

Conditional and Joint Probabilities

Example

brown red margin

early p(W=eH=5b)=031 pW=e,
late p(W=IH=b)=046 pW=],

=015 p(W=e)=0.46
1)=008  p(W=I/) =054

=r)=0.23 p(Q) =1

H
margin p(H=b)=0.77 p(H

Table: (Joint) Probabilities, derived by dividing everything by ||

_ p(A,B)
p(A[B) H(6)
30

p(W=IH=b) = 50— = 0.6 from previous slide
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Probabilities

Conditional and Joint Probabilities

Example

brown red margin

early p(W=eH=5b)=031 pW=e,
late p(W=IH=b)=046 pW=],

=015 p(W=e)=0.46
1)=008  p(W=I/) =054

=r)=0.23 p(Q) =1

H
margin p(H=b)=0.77 p(H

Table: (Joint) Probabilities, derived by dividing everything by ||

pag) = PP

p(B)
30
p(W=IH=b) = 50— = 0.6 from previous slide
p( =LH= b)

= by applying equation above
p(H = b) y applying eq
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Probabilities

Conditional and Joint Probabilities

Example
brown red margin
early p(W=e,H=b)=031 pW=eH=r)=0.15 p(W=¢e)=0.46
late p(W=1IH=b)=046 pW=I/H=r)=008 p(W=1I)=0.54
margin p(H=b)=0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by ||

p(A[B)

30 =0.6 from

50

p( :lvH:b)
p(H = b)

0.46

0.77_0'6

p(W = I|H = b)

previous slide

by applying equation above
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Probabilities

Conditional and Joint Probabilities

Random Variables

» W and H: Random variables
» Generally:

» Random variables are functions X : Q@ — R
» Random variables map events to numbers

» (and numbers can be assigned to categories)

» Conceptually, features can be considered as random variables
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Probabilities

Multiple Conditions

> Joint probabilities can include more than two events

p(E1,E2,E3,. . )
» Conditional probabilities can be conditioned on more than two
events

p(A,B,C,D)

PAIB.C.D) =75 ¢ p)
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Probabilities

Multiple Conditions

> Joint probabilities can include more than two events

p(E1,E2,E3,. . )
» Conditional probabilities can be conditioned on more than two
events
p(A, B,C,D)
A|B,C,D) = —————=
F)( | ’ ) ) f)(lg, (j7 [))
» Chain rule

p(A,B,C,D) = p(A|B,C,D)p(B,C,D)
= p(A[B, C, D)p(B|C, D)p(C, D)
p(A[B, C, D)p(B|C, D)p(C|D)p(D)
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Probabilities

Bayes Law

_ pAB) _ plAIB)P(B)
PR =00 = pid)

Allows reordering of conditional probabilities

» Follows directly from above definitions
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Naive Bayes

Section 2

Naive Bayes
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Naive Bayes

Naive Bayes
Prediction Model

» Probabilistic model
(i.e., takes probabilities into account)

» Probabilities are estimated on training data (relative frequencies)

17/29



Naive Bayes

Naive Bayes
Prediction Model

prediction(x) = argmaxp(c|fi(x), f2(x), ..., fn(x))

ceC

(i.e., we calculate the probability for each possible class c, given the
feature values of the item x, and we assign most probably class)
In our case:

prediction(x) = argmax p(cl|f(x),f2(x),...,fh(x))
ce{RAVO}

» argmax: Select the argument that maximizes the expression
» How exactly do we calculate p(c|fi(x), f2(x), ..., fa(x))?
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Naive Bayes

Naive Bayes
Prediction Model

p(clfi,....fh) =
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Naive Bayes

Naive Bayes
Prediction Model

p(CvfhfZ"")fn)

clfi,...,f,
p(clf ) p(rfor i f)
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Naive Bayes

Naive Bayes
Prediction Model

p(C,f],fz,...,fn) p(ﬂ,fz,...,fn,C)
clfi,...,fp) = =
plelh ) p(riforif)  plhifare . f)
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Naive Bayes
Prediction Model

p(clfi,...

+In)

Naive Bayes

p(C,f1,f2,...,fn) i p(f1,f2,...,fn,C)

p(ﬂafZa"'afn) B P(fhfZa---’fn)

denominator is constant, so we skip it

08 p(ﬂ’fZa"'7fn7c)p(f2‘f37"‘7fn7C)"'p(C)
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Naive Bayes

Naive Bayes
Prediction Model

p(C,f1,f2,...,fn) p(f1,f2,...,fn,C)
clfi,...,fp) = =
PR oln) = S TR T Pl )
denominator is constant, so we skip it

08 p(f1’f27"'7fn7c)p(f2‘f37"‘7fn7C)"'p(C)

Now we assume feature independence

= p(Alp(EID). .- p(c)
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Naive Bayes

Naive Bayes
Prediction Model

p(C,f1,f2,...,fn) p(f1,f2,...,fn,C)
clfi,...,fp) = =
PR oln) = S TR T Pl )

denominator is constant, so we skip it
< p(filfa,....f,0)p(falfs,... . fhC)...p(c)
Now we assume feature independence
= p(hlc)p(fl0) ... p(c)
prediction(x) = argmaxp(fi(x)|c)p(f2(x)|c) ... p(c)
ceC

How do we get p(fi(x)|c)? This is what the model has stored!
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Naive Bayes

Naive Bayes
Learning Algorithm

> Very simple
1. For each feature f; € F
» Count frequency tables from the training set:

C (classes)
C1 C2 Cm
a 3 2
‘M- q
S 8 10

2. Calculate conditional probabilities
» Divide each number by the sum of the entire column
> E.g., p(alc) = 3+§7+0 p(blc2) = ﬁ
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Naive Bayes

Naive Bayes
Data set

Dirain = {7*7A.,Q‘7K‘,/‘,3‘,
5¢,8¢,7¢,39,70,50}
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Naive Bayes

Naive Bayes — Example Task

Feature f1: Number?

C (classes)
& & O O
y 1.1 3 3
V(f1 ) n 0 4 0 O
SS 1 5 3 3

p(fi=yl0)=1  p(h=n|O) =
p(fi = y|#) =

Ul —
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Naive Bayes

Naive Bayes — Example Task

Feature f»: Color?

C (classes)
o O O
b 0 0 3 3
v(fz) r 1 5 0 O
SS 1 5 3 3

p(f =r|#) =0  p(f, =b|#) =1
pl=rd)=1 " p(f,=b[0)=0
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Naive Bayes

Naive Bayes — Example Task
Feature f3: Odd/Even/Face?

wl o =N

plf =ol#) = plfy =cl#)=0 p(f; =)=

p(fs =el0) =3 p(fs =10) =

4
5
0
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Naive Bayes

Naive Bayes — Example Task

Prediction

prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}

25/29



Naive Bayes

Naive Bayes — Example Task

Prediction

prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}

p(In.b,f) = plfi = nl&) = p(f, = b|) * p(f; = )
=0
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Naive Bayes — Example Task

Prediction
prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}
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=0
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prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}

p(#In,b,f) = plfy = n|#) «p(f2 = bl#) < p(f = /1)
=0

POl bf) = plfi = nl9) % p(fy = bIV)  p(F = V)
=0

p(&[n,b,f) = p(fi = n|#)p(f, = b|&) = p(fs = 1|#)
= g x 1 % g =0.64

25/29



Naive Bayes

Naive Bayes — Example Task

Prediction
prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}

p(#In,b,f) = plfy = n|#) «p(f2 = bl#) < p(f = /1)
=0

POl bf) = plfi = nl9) % p(fy = bIV)  p(F = V)
=0

p(&[n,b,f) = p(fi = n|#)p(f, = b|&) = p(fs = 1|#)
= g x 1 % g =0.64

p(&$|n,b,f) = ...=0

25/29



Naive Bayes

Naive Bayes — Example Task

Prediction
prediction(K&#) = argmax p(c|n,b,f) features extracted from Ky
cE{MRDO}
p(#In,b,f) = plfy = n|#) «p(f2 = bl#) < p(f = /1)
=0
POl bf) = plfi = nl9) % p(fy = bIV)  p(F = V)
=0
p(&[n,b,f) = p(fi = n|#)p(f, = b|&) = p(fs = 1|#)
= g * 1 % g = 0.64
p(&$|n,b,f) = ...=0
We predict &
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Naive Bayes

Naive Bayes — Example Task

Prediction
prediction(6{) =  argmax p(cly,r,e)
cE{MROO}
p(dly,r.e) = p(fi =y|d)*p(fr = r|&) = p(f; = e|&d)
=0
POly,re) = plfi = y|9) «plhy = 119)  p(fy = e[0)
= 1x1%x0=0
p(Cly.rie) = p(fi =y|¢) * p(fa = r|d) * p(fzs = €[$)
= 1x1x l = l
3 3

We predict <

26/29



Naive Bayes

Naive Bayes — Example Task

Prediction
prediction(K$) = argmax p(c|n,r,f)
cc{MRVO}

p(d[n,r,f) = p(fi = n|d) = p(f, = r|d) * p(f3 = f|d)
=0

p(Qln,r.f) = p(fi = n|Q) x p(fy = r|Q) x p(fs = ]0)
= 0

p(Oln;r.f) = plfi = n|&) x p(fa = 1|) x p(fs = 1]0)
= 0

Oops, all probabilities are zero
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Naive Bayes

Naive Bayes
Smoothing

» Whenever multiplication is involved, zeros are dangerous
» Smoothing is used to avoid zeros

» Different possibilities

» Simple: Add something to the probabilities

Xj+a
N+ad

> Eg., p(f; = e|l#) = ;355
» This leads to values slightly above zero
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Naive Bayes

Naive Bayes

» ‘Naive’: Assuming feature independence is usually wrong
> Even in our toy example, f; and f; are highly dependent
> Pros

> Easy to implement, fast
» Small models

» Cons

> Naive: Feature dependence not modeled
» Fragile for unseen data (without smoothing)

29/29



	Introduction and Preliminaries
	Annotation
	Automatisation and Machine Learning
	Probabilities
	Naive Bayes


