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Probabilities

Section 1

Probabilities
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Probabilities

Basics: Cards

▶ 32 cards Ω (sample space)
▶ 4 ‘colors’: C = {♣,♠,♢,♡}
▶ 8 values: V = {7, 8, 9, 10, J,Q,K,A}
▶ Individual cards (‘outcomes’) are denoted with value and color: 8♡
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Probabilities

Basics
Events

▶ Generally, we draw cards from a (well shuffled) deck
▶ We define what events we are interested in
▶ An event can be any subset of the sample space Ω

▶ Events will be denoted with E

Examples

▶ ‘We draw a heart eight’ – E = {8♡}
▶ ‘We draw card with a diamond’ –

E = {7♢, 8♢, 9♢, 10♢, J♢,Q♢,K♢,A♢}
▶ ‘We draw a queen’ – E = {Q♣,Q♠,Q♢,Q♡}
▶ ‘We draw a heart eight or diamond 10’ – E = {8♡, 10♢}
▶ ‘We draw any card’ – E = Ω
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Probabilities

Basics
Probabilities

▶ Probability p(E): Likelihood, that a certain event (E ⊂ Ω) happens
▶ 0 ≤ p ≤ 1
▶ p(E) = 0: Impossible event p(E) = 1: Certain event
▶ p(E) = 0.000001: Very unlikely event

Example

▶ If all outcomes are equally likely: p(E) = |E|
|Ω|

▶ p({8♡}) = 1
32

▶ p({Q♣,Q♠,Q♢,Q♡}) = 4
32

▶ p(Ω) = 1 (must happen, certain event)
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Probabilities

Basics I
Probability and Relative Frequency

▶ Probability (p): Theoretical concept, idealisation
▶ Expectation

▶ Relative Frequency (f): Concrete measure
▶ Normalised number of observed events
▶ E.g., after 10 times drawing a card (with returning and shuffling), we

counted the event ♠ eight times: f({x♠}) = 8
10

▶ For large numbers of drawings, relative frequency approximates the
probability
▶ lim∞ f = p

▶ In practice, we will often use relative frequency as probability
▶ This assumes that the data set on which we measure relative

frequency is representative etc.
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Probabilities

Basics
Joint Probability (Independent Events)

▶ We are often interested in multiple events (and their relation)
▶ E: We draw 8♡ two times in a row

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E) = p(E1, E2) = p(E1) ∗ p(E2) = 1

32 ∗ 1
32 = 0.0156

▶ E: We draw ♡ two times in a row
▶ E1: First card is X♡
▶ E2: Second card is X♡
▶ p(E) = p(E1, E2) = p(E1) ∗ p(E2) = 1

4 ∗ 1
4 = 0.0625

▶ So far, events have been independent
▶ because we return and re-shuffle the cards all the time
▶ Drawing 8♡ the first time has no influence on the second drawing
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Probabilities

Basics I
Conditional Probability (Dependent Events)

▶ We no longer return the card
▶ E: We draw 8♡ two times in a row

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E1, E2) = p(E1) ∗ p(E2)
▶ This no longer works, because the events are not independent
▶ There is only one 8♡ in the game, and p(E2) has to take into account

that it might be gone already
▶ This is expressed with the notion of conditional probability
▶ p(E1, E2) = p(E1) ∗ p(E2|E1)

▶ p(E2|E1) = 0, therefore p(E) = 0
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Probabilities

Basics II
Conditional Probability (Dependent Events)

▶ E: We draw ♡ two times in a row
▶ E1: First card is X♡
▶ E2: Second card is X♡
▶ p(E1, E2) = p(E1) ∗ p(E2|E1) = 8

32 ∗ 7
31 = 0.056
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Probabilities

Conditional and Joint Probabilities
Example

Relation between hair color (H) and preferred wake-up time (W)1

brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Experimental Results, Ω: Group of questioned people, |Ω| = 65

1All numbers are made up
11 / 29
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Probabilities
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Probabilities

Conditional and Joint Probabilities
Example

brown red margin

early p(W = e,H = b) = 0.31 p(W = e,H = r) = 0.15 p(W = e) = 0.46
late p(W = l,H = b) = 0.46 p(W = l,H = r) = 0.08 p(W = l) = 0.54

margin p(H = b) = 0.77 p(H = r) = 0.23 p(Ω) = 1

Table: (Joint) Probabilities, derived by dividing everything by |Ω|

p(A|B) =
p(A,B)
p(B)

p(W = l|H = b) =
30
50

= 0.6 from previous slide

=
p(W = l,H = b)

p(H = b)
by applying equation above

=
0.46
0.77

= 0.6
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Probabilities

Conditional and Joint Probabilities
Random Variables

▶ W and H: Random variables
▶ Generally:

▶ Random variables are functions X : Ω → R
▶ Random variables map events to numbers

▶ (and numbers can be assigned to categories)

▶ Conceptually, features can be considered as random variables

13 / 29



Probabilities

Multiple Conditions

▶ Joint probabilities can include more than two events
p(E1, E2, E3, . . . )

▶ Conditional probabilities can be conditioned on more than two
events

p(A|B,C,D) =
p(A,B,C,D)

p(B,C,D)

▶ Chain rule

p(A,B,C,D) = p(A|B,C,D)p(B,C,D)

= p(A|B,C,D)p(B|C,D)p(C,D)

= p(A|B,C,D)p(B|C,D)p(C|D)p(D)
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Probabilities

Bayes Law

p(B|A) = p(A,B)
p(A)

=
p(A|B)p(B)

p(A)

Allows reordering of conditional probabilities
▶ Follows directly from above definitions
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Naive Bayes

Section 2

Naive Bayes
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Naive Bayes

Naive Bayes
Prediction Model

▶ Probabilistic model
(i.e., takes probabilities into account)

▶ Probabilities are estimated on training data (relative frequencies)
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Naive Bayes

Naive Bayes
Prediction Model

prediction(x) = argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

(i.e., we calculate the probability for each possible class c, given the
feature values of the item x, and we assign most probably class)
In our case:

prediction(x) = argmax
c∈{♣♠♡♢}

p(c|f1(x), f2(x), . . . , fn(x))

▶ argmax: Select the argument that maximizes the expression
▶ How exactly do we calculate p(c|f1(x), f2(x), . . . , fn(x))?
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Naive Bayes

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =

p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

denominator is constant, so we skip it

∝ p(f1|f2, . . . , fn, c)p(f2|f3, . . . , fn, c) . . .p(c)
Now we assume feature independence

= p(f1|c)p(f2|t) . . .p(c)
prediction(x) = argmax

c∈C
p(f1(x)|c)p(f2(x)|c) . . .p(c)

How do we get p(fi(x)|c)? This is what the model has stored!
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Naive Bayes

Naive Bayes
Learning Algorithm

▶ Very simple
1. For each feature fi ∈ F

▶ Count frequency tables from the training set:

C (classes)
c1 c2 … cm

v(fi)

a 3 2 …
b 5 7 …
c 0 1 …∑

8 10

2. Calculate conditional probabilities
▶ Divide each number by the sum of the entire column
▶ E.g., p(a|c1) = 3

3+5+0 p(b|c2) = 7
2+7+1
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Naive Bayes

Naive Bayes
Data set

Dtrain = {7♣,A♠,Q♠,K♠, J♠, 3♠,

5♢, 8♢, 7♢, 3♡, 7♡, 5♡}
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Naive Bayes

Naive Bayes – Example Task
Feature f1: Number?

C (classes)
♣ ♠ ♡ ♢

v(f1)

y 1 1 3 3
n 0 4 0 0∑

1 5 3 3

p(f1 = y|♢) = 1 p(f1 = n|♢) = 0

p(f1 = y|♠) =
1
5

p(f1 = n|♠) =
4
5
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Naive Bayes

Naive Bayes – Example Task
Feature f2: Color?

C (classes)
♣ ♠ ♡ ♢

v(f2)

b 0 0 3 3
r 1 5 0 0∑

1 5 3 3

p(f2 = r|♠) = 0 p(f2 = b|♠) = 1

p(f2 = r|♢) = 1 p(f2 = b|♢) = 0
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Naive Bayes

Naive Bayes – Example Task
Feature f3: Odd/Even/Face?

C (classes)
♣ ♠ ♡ ♢

v(f3)

o 1 1 3 2
e 0 0 0 1
f 0 4 0 0∑

1 5 3 3

p(f3 = o|♠) =
1
5

p(f3 = e|♠) = 0 p(f3 = f|♠) =
4
5

p(f3 = o|♢) =
2
3

p(f3 = e|♢) = 1
3 p(f3 = f|♢) = 0
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♠) = argmax
c∈{♠♣♡♢}

p(c|n,b, f) features extracted from K♠

p(♣|n,b, f) = p(f1 = n|♣) ∗ p(f2 = b|♣) ∗ p(f3 = f|♣)

= 0

p(♡|n,b, f) = p(f1 = n|♡) ∗ p(f2 = b|♡) ∗ p(f3 = f|♡)

= 0

p(♠|n,b, f) = p(f1 = n|♠) ∗ p(f2 = b|♠) ∗ p(f3 = f|♠)

=
4
5
∗ 1 ∗ 4

5
= 0.64

p(♢|n,b, f) = . . . = 0

We predict ♠
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(6♢) = argmax
c∈{♠♣♡♢}

p(c|y, r, e)

p(♣|y, r, e) = p(f1 = y|♣) ∗ p(f2 = r|♣) ∗ p(f3 = e|♣)

= 0

p(♡|y, r, e) = p(f1 = y|♡) ∗ p(f2 = r|♡) ∗ p(f3 = e|♡)

= 1 ∗ 1 ∗ 0 = 0

p(♢|y, r, e) = p(f1 = y|♢) ∗ p(f2 = r|♢) ∗ p(f3 = e|♢)

= 1 ∗ 1 ∗ 1
3
=

1
3

We predict ♢
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Naive Bayes

Naive Bayes – Example Task
Prediction

prediction(K♢) = argmax
c∈{♠♣♡♢}

p(c|n, r, f)

p(♣|n, r, f) = p(f1 = n|♣) ∗ p(f2 = r|♣) ∗ p(f3 = f|♣)

= 0

p(♡|n, r, f) = p(f1 = n|♡) ∗ p(f2 = r|♡) ∗ p(f3 = f|♡)

= 0

p(♢|n, r, f) = p(f1 = n|♢) ∗ p(f2 = r|♢) ∗ p(f3 = f|♢)

= 0

Oops, all probabilities are zero
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Naive Bayes

Naive Bayes
Smoothing

▶ Whenever multiplication is involved, zeros are dangerous
▶ Smoothing is used to avoid zeros
▶ Different possibilities
▶ Simple: Add something to the probabilities

▶ xi+a
N+ad

▶ E.g., p(f3 = e|♠) = 0+1
4+1∗4▶ This leads to values slightly above zero
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Naive Bayes

Naive Bayes

▶ ‘Naive’: Assuming feature independence is usually wrong
▶ Even in our toy example, f1 and f3 are highly dependent

▶ Pros
▶ Easy to implement, fast
▶ Small models

▶ Cons
▶ Naive: Feature dependence not modeled
▶ Fragile for unseen data (without smoothing)
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